При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов.

В заданиях, где нужно установить соответствие между двумя столбцами, ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Некоторые данные правого столбца могут использоваться несколько раз или не использоваться вообще. Например: A1Б1В4Г2.

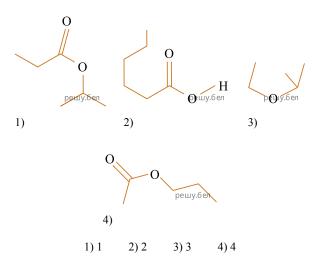
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Согласно положению в периодической системе наиболее выраженные металлические свойства проявляет элемент, электронная конфигурация внешнего энергетического уровня которого в основном состоянии:

1	$2s^2$	2)	$3s^2$	3) $4s^2$	4) 5s
	, -3	4)	20	<i>J</i> 15	7,00

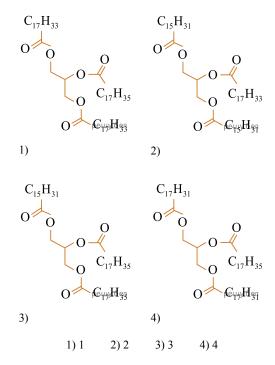
- 2. К классу альдегидов относится вещество, название которого:
 - 1) бензол 2) этанол 3) этаналь 4) этен
- **3.** Укажите процесс, одним из продуктов которого является кислород:
 - 1) спиртовое брожение глюкозы 2) фотосинтез 3) растворение карбида кальция в воде 4) гидролиз жира
 - 4. Выберите химическое явление:
 - 1) крекинг нефти;
 - 2) отделение осадка сульфата бария от раствора при помощи фильтрования;
 - 3) перегонка нефти; 4) плавление льда.
 - 5. Укажите верное утверждение:
 - 1) по группе сверху вниз связь электронов внешнего слоя с ядром в атомах галогенов усиливается
 - 2) ns^2np^5 электронная конфигурация внешнего слоя атомов элементов VIIA-группы в основном состоянии
 - максимальная валентность всех элементов VIIA-группы равна четырем
 - 4) атомы галогенов в соединениях H_5IO_6, Cl_2O_5 , находятся в высшей степени окисления
- Оксид фосфора(V) проявляет кислотные свойства, реагируя с веществами:

- 7. Железный гвоздь погрузил в разбавленный водный раствор вещества X. При этом масса гвоздя НЕ изменилась. Веществом X является:
 - 1) хлороводород 2) бромид калия 3) нитрат свинца (II) 4) сульфат ртути (II)
 - 8. Вещество, которое НЕ вступает в реакцию гидрирования, это:


9. Водный раствор гидроксида бария реагирует с каждым веществом в ряду:

- 2) K₂SO₄, CuO, FeCl₂; 1) NaHCO₃, Zn(OH)₂, Na₂SO₄; 3) NaNO₃, Mg(OH)₂, FeCl₃; 4) CO₂, Mn₂O₇, Cu.
- 10. Укажите вещество, из которого в указанных условиях можно получить этаналь:
 - 1) C_2H_5OH/H_2SO_4 конц., t 2) CH_3OH/O_2 , Cu, t4) C_2H_4/O_2 , $PdCl_2$, $CuCl_2$, H_2O , t3) CH_4/H_2O , Ni, t, p
 - 11. Дана левая часть уравнения (коэффициенты расставлены):

$$Ca_3(PO_4)_2 + H_3PO_4 = .$$


Укажите формулу продукта реакции:

- 1) CaHPO₄; 2) $Ca(H_2PO_4)_2$; 3) $Ca(HPO_4)_2$; 4) CaH₂PO₄.
- 12. Названию вещества пропилэтаноат соответствует формула:

- 13. К раствору гидроксида натрия, содержащему метилоранж, добавили избыток иодоводородной кислоты. Укажите, как изменилась окраска раствора после добавления кислоты:
 - 1) с желтой на красную; 2) с фиолетовой на синюю;
 - 3) с красной на желтую; 4) с синей на красную;
- - 5) раствор стал бесцветным.

14. При полном гидролизе триглицерида получена смесь, состоящая из пальмитиновой и олеиновой кислот. Укажите формулу триглицерида:

- 15. Ионную кристаллическую структуру образует вещество:
 - 1) оксид кремния(IV) 2) кальцинированная сода 3) марганец 5) графит 4) фтор
- 16. Высшую степень окисления в соединениях, равную +2, проявляет элемент:
 - 1) Fe 2) Na 3) Be 4) N 5) S
 - 17. Для получения веществ по указанной схеме превращений

$$KI \rightarrow KCl \rightarrow HCl \rightarrow FeCl_2 \rightarrow FeCl_3$$

выберите реагенты из предложенных:

- 1 Fe
- 2 FeO
- $3 H_2SO_4$ (конц.) $4 Cl_2$

Ответ запишите цифрами в порядке следования превращений, например: 1224. Помните, что один реагент может использоваться несколько раз, а другой — не использоваться вообще.

18. Определите коэффициент перед формулой продукта восстановления в уравнении химической реакции, протекающей по схеме

$$\mathbf{KI} + \mathbf{KNO_2} + \mathbf{H_2SO_4} \longrightarrow \mathbf{I_2} + \mathbf{NO} + \mathbf{K_2SO_4} + \mathbf{H_2O}.$$

19. Определите молярную массу (г/моль) соли, полученной в результате следующих превращений органических веществ:

$$C_2H_6 \xrightarrow{\text{Ni, t}} \dots \xrightarrow{\text{O}_2/\text{PdCl}_2, \text{CuCl}_2, \text{H}_2\text{O}} \dots \xrightarrow{\text{KMnO}_4/\text{H}^+} \dots \longrightarrow \underbrace{\text{CH}_3(\text{CH}_2)_3\text{NH}_2}_{\text{---}} \dots$$

- **20.** Массовая доля тристеарина в некотором жире составляет 24%. Чему равна масса (кг) стеарата калия, полученного в результате омыления данного жира массой 720 кг (выход считайте 100%)? (Считайте, что все остатки стеариновой кислоты входят в состав тристеарина.)
 - 21. Выберите утверждения, характеризующие водород:
 - 1) не имеет запаха
 - 2) молярная масса D_2 больше молярной массы H_2
 - 3) в реакции с литием выступает в роли восстановителя
 - 4) в метане и гидриде кальция имеет степень окисления, равную -1
 - 5) выделяется в виде газа при растворении меди в азотной кислоте
 - 6) простое вещество может проявлять свойства окислителя

Ответ запишите в виде последовательности цифр в порядке возрастания, например: 245.

- **22.** К раствору медного купороса массой 48 г с массовой Долей сульфата меди(II) 8% добавили некоторое количество насыщенного раствора сульфида натрия. Растворимость сульфида натрия в условиях эксперимента составляла 25 г на 100 г воды. После отделения осадка оказалось, что концентрация (моль/дм 3) ионов Na $^+$ в растворе в девять раз больше, чем S 2 . Определите массу (г) насыщенного раствора сульфида натрия, использованного в описанном эксперименте.
 - 23. Для получения веществ по схеме превращений

$${\rm ZnO} \stackrel{A}{\longrightarrow} {\rm K_2[Zn(OH)_4]} \stackrel{B}{\longrightarrow} {\rm ZnBr_2} \stackrel{B}{\longrightarrow} {\rm Zn} \stackrel{\Gamma}{\longrightarrow} {\rm Zn(NO_3)_2}.$$

Для осуществления превращений выберите четыре реагента из предложенных (электролиты взяты в виде разбавленных водных растворов):

- 1) NaBr;
- 2) KNO₃;
- 3) Co;
- 4) KOH;
- 5) AgNO₃;
- 6) Be;
- 7) HBr.

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв, **например: А4Б1В5Г2.**

- **24.** В четырех пронумерованных пробирках находятся растворы неорганических веществ. О них известно следующее:
- вещества из пробирок 2 и 3 нейтрализуют друг друга, способны растворять цинк, его оксид и гидроксид;
- вещества из пробирок 3 и 4 реагируют между собой с образованием осадка, способного растворяться как в кислотах, так и в щелочах;
- при электролизе расплава вещества из пробирки 1 выделяется газ (н. у.) зеленовато-желтого цвета, имеющий характерный запах.

Установите соответствие между содержимым пробирки и ее номером.

СОДЕРЖИМОЕ ПРОБИРКИ	№ ПРОБИРКИ
А) гидроксид калия	1
Б) сульфат алюминия	2
В) азотная кислота	3
Г) хлорил натрия	4

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца, например: A251B3Г4.

25. Дана схема химической реакции:

$$\operatorname{Be}_{(TB)} + \operatorname{HCl}_{(p-p)} \rightleftharpoons \operatorname{BeCl}_{2(p-p)} + \operatorname{H}_{2(r)}.$$

Установите соответствие между воздействием на реакцию и изменением ее скорости в результате этого воздействия.

- А) повышение температуры
- Б) уменьшение концентрации хлороводорода
- В) измельчение бериллия
 - 1) уменьшается
 - 2) увеличивается
 - 3) НЕ изменяется

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца, например: A1БЗВЗ. Помните, что некоторые данные правого столбца могут использоваться несколько раз или вообще не использоваться.

- **26.** В четырёх пронумерованных пробирках находятся водные растворы веществ, содержащие ионы $H^+, SO_4^{2-}, Cu^{2+}, OH^-$. В ходе опытов обнаружилось следующее:
- при добавлении к содержимому пробирок алюминия в пробирках 1 и 2 наблюдалось выделение газа;
- в пробирке 3 алюминий покрылся красным налётом, в пробирке 4 ничего не происходило;
- при добавлении в пробирку 1 гидрокарбоната натрия происходит выделение газа;
- при добавлении в пробирку 2 хлорида аммония выделяется газ с резким запахом.

На основании приведённых данных определите, в какой пробирке содержалось каждое из веществ.

ФОРМУЛА ИОНА НОМЕР ПРОБИРКИ

A) H ⁺ ;	1
Б) SO ₄ ²⁻ ;	2
	3
B) Cu ²⁺ ;	4
L) OH-	

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв из левого столбца, например: A3Б2В4Г1.

27. Установите соответствие между формулой вещества и его принадлежностью к соответствующему классу (группе) неорганических соединений.

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца, например: A2Б3В5Г1. Помните, что некоторые данные правого столбца могут использоваться несколько раз или вообще не использоваться. 28. Для осуществления превращений (обозначены буквами А—Г)

$$\mathrm{Ba}(\mathrm{OH})_2 \stackrel{A}{\longrightarrow} \mathrm{Ba}(\mathrm{HCO_3})_2 \stackrel{\overline{\mathrm{B}}}{\longrightarrow} \mathrm{Ba}\mathrm{CO_3} \stackrel{\overline{\mathrm{B}}}{\longrightarrow} \mathrm{Ba}(\mathrm{NO_3})_2 \stackrel{\Gamma}{\longrightarrow} \mathrm{Ba}\mathrm{SO_4}$$

выберите четыре разных реагента из предложенных:

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв, например: A2Б5В1Г3.

29. Дан перечень неорганических соединений:

азот, гелий, гидроксид магния, гидроксид меди(Π), кварц, нитрат калия, озон, углекислый газ.

Распределите указанные соединения по четырем группам:

простые вещества, высшие оксиды, нерастворимые основания и соли.

Ответ запишите в виде последовательности цифр, обозначающих число соединений в каждой группе соответственно, например: 2321.

- **30.** В четырех пронумерованных пробирках находятся разбавленные растворы неорганических веществ. О них известно следующее:
- вещества из пробирок 2 и 4 реагируют между собой с образованием осадка, нерастворимого в кислотах;
- вещества из пробирок 1 и 2 реагируют друг с другом с выделением газа;
- вещества из пробирок 3 и 4 реагируют с образованием осадка, растворимого как в кислотах, так и в щелочах.

Установите соответствие между названием вещества и номером пробирки, в которой находится раствор данного вещества.

 A) серная кислота
 1) 1

 Б) хлорид алюминия
 2) 2

 В) карбонат лития
 3) 3

Γ) гидроксид бария
 4) 4
 Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную

31. Найдите сумму молярных масс (г/моль) алюминийсодержащих веществ Б и Д, образовавшихся в результате превращений:

последовательность букв левого столбца, например: А1Б4В3Г2.

$$1 \text{ моль } Al(NO_3)_3 \xrightarrow{\quad t \quad} A \xrightarrow{\quad 1 \text{ моль } LiOH, \ t \quad} \Rightarrow B \xrightarrow{\quad HI \ (pas6., \ us6.) \quad} \Rightarrow B \xrightarrow{\quad 3 \text{ моль } KOH \ (p-p) \quad} \Gamma \xrightarrow{\quad KOH \ (конц., \ us6.) \quad} \Rightarrow B \xrightarrow{\quad 1 \text{ моль } KOH \ (p-p) \quad} \Gamma \xrightarrow{\quad KOH \ (kohll., \ us6.) \quad} \Rightarrow B \xrightarrow{\quad 1 \text{ моль } KOH \ (p-p) \quad} \Gamma \xrightarrow{\quad KOH \ (kohll., \ us6.) \quad} \Rightarrow B \xrightarrow{\quad 1 \text{ моль } KOH \ (p-p) \quad} \Gamma \xrightarrow{\quad KOH \ (kohll., \ us6.) \quad} \Rightarrow B \xrightarrow{\quad 1 \text{ моль } KOH \ (p-p) \quad} \Gamma \xrightarrow{\quad KOH \ (kohll., \ us6.) \quad} \Rightarrow B \xrightarrow{\quad 1 \text{ моль } KOH \ (p-p) \quad} \Gamma \xrightarrow{\quad KOH \ (kohll., \ us6.) \quad} \Rightarrow B \xrightarrow{\quad 1 \text{ моль } KOH \ (p-p) \quad} \Gamma \xrightarrow{\quad KOH \ (kohll., \ us6.) \quad} \Rightarrow B \xrightarrow{\quad 1 \text{ моль } KOH \ (p-p) \quad} \Gamma \xrightarrow{\quad KOH \ (kohll., \ us6.) \quad} \Rightarrow B \xrightarrow{\quad 1 \text{ моль } KOH \ (p-p) \quad} \Gamma \xrightarrow{\quad KOH \ (kohll., \ us6.) \quad} \Rightarrow B \xrightarrow{\quad 1 \text{ моль } KOH \ (p-p) \quad} \Gamma \xrightarrow{\quad KOH \ (kohll., \ us6.) \quad} \Rightarrow B \xrightarrow{\quad 1 \text{ моль } KOH \ (p-p) \quad} \Gamma \xrightarrow{\quad KOH \ (kohll., \ us6.) \quad} \Rightarrow B \xrightarrow{\quad 1 \text{ моль } KOH \ (p-p) \quad} \Gamma \xrightarrow{\quad KOH \ (kohll., \ us6.) \quad} \Rightarrow B \xrightarrow{\quad 1 \text{ None } KOH \ (p-p) \quad} \Gamma \xrightarrow{\quad KOH \ (kohll., \ us6.) \quad} \Rightarrow B \xrightarrow{\quad 1 \text{ None } KOH \ (p-p) \quad} \Gamma \xrightarrow{\quad KOH \ (p-p) \quad} \Gamma \xrightarrow{\quad KOH \ (p-p) \quad} \Gamma \xrightarrow{\quad KOH \ (p-p) \quad} = B \xrightarrow{\quad 1 \text{ None } KOH \ (p-p) \quad}$$

32. Для анализов смеси хлоридов натрия и аммония провели следующие операции. Навеску смеси массой 5г растворили в воде. К полученному раствору прибавили 250г раствора гидроксида калия с массовой долей КОН 2,8% и нагрели до полного удаления аммиака. В образовавшийся раствор добавили метиловый оранжевый, а затем акуратно прибавляли соляную кислоту, пока среда раствора не стала нейтральной. Объем израсходованной кислоты равен 190см³, концентрация *HCl* в кислоте 0,5моль/дм³. Вычислите массовую долю(%) хлорида аммония в исходной смеси.

33. Выберите утверждения, верно характеризующие фосфорную кислоту:

1	массовая доля кислорода составляет 65,3%			
2	химическая формула Н ₃ РО ₃			
3	в реакциях с металлами образует только средние соли			
4	используется в производстве кормовых добавок			
5	при электролитической диссоциации образует три различных аниона			
6	взаимодействует с кремнеземом			

Ответ запишите цифрами (порядок записи цифр не имеет значения), например: 236

- **34.** В избытке воды растворили 25 г медного купороса, а затем 14 г сульфида бария. Образовавшуюся смесь профильтровали, осадок отделили и высушили. Вычислите массу (г) полученного в результате эксперимента твердого остатка.
- 35. Расположите водные растворы веществ в порядке увеличения их pH:
 - 1) 0,1 моль/дм 3 H_2SO_4
 - 2) 0,1 моль/дм³ HCOOH
 - 3) 0,1 моль/дм³ KNO_3
 - 4) 0,1 моль/дм³ HNO₃
- **36.** Кристаллогидрат $MeSO_4 \cdot xH_2O$ растворили в растворе массой 100 г с массовой долей $MeSO_4$, равной 10 %. В результате получили раствор с массовой долей $MeSO_4$, равной 20.8 %. При добавлении к этому раствору избытка раствора нитрата бария выпало 37.86 г осадка. При обезвоживании кристаллогидрата выделяется столько воды, сколько требуется для гидратации 11.2 дм 3 (н. у.) этена. Укажите молярную массу (г/моль) кристаллогидрата.
- **37.** В водном растворе массой 88,2 г с массовой долей серной кислоты 10% растворили оксид серы(VI) массой 16 г. Вычислите, какой объем (см³) раствора гидроксида калия с молярной концентрацией щелочи 1 моль/дм³ необходим для полной нейтрализации полученного раствора кислоты.
 - 38. Дана обратимая реакция

$$N_{2(r)} + 3H_{2(r)} \rightleftharpoons 2NH_{3(r)} + Q$$

Установите соответствие между между воздействием на реакцию и направлением смещения равновесия в результате этого воздействия.

- А) повышение давления
- 1) НЕ смещается
- Б) повышение температуры
- 2) влево
- В) увеличение концентрации H_2
- вправо
- Г) добавление катализатора

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца, например: A2Б1ВЗГ2.